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S P E C I A L  F E A T U R E S  OF T H E  D Y N A M I C S  
OF H E A T I N G  OF M O V I N G  M E D I A  
BY E L E C T R O M A G N E T I C  R A D I A T I O N  

I. L. Khabibul l in  and F. F. N a z m u t d i n o v  UDC 536.37:538.36 

The dynamics of temperature waves in moving media heated by high-frequency electromagnetic radia- 
tion has been studied by the methods of numerical simulation with allowance for the dependence of  the 
viscosi~ and the absorption coefficient of the radiation on temperature. 

Special features of the heating of  motionless absorbing media by electromagnetic radiation with allow- 
ance for nonlinear effects caused by a variation in the degree of absorption of the radiation during the heating 
were considered in [1]. At the same time, many scientific and engineering problems use the heating of  moving 
media by electromagnetic radiation. Here we can mention such processes as decontamination of materials by 
the method of zone melting, melting of dielectric media in a wave guide [2, 3], heating and drying of  capil- 
lary-porous and loose media, conveyor technologies of electromagnetic treatment [4, 5], intensification of the 
output of  mineral resources [6], etc. 

The dynamics of a temperature field in simulation of these processes is determined by heat conduction, 
heat transfer by convection, heat exchange with the environment, and dissipation of the energy of electromag- 
netic radiation to heat. From the point of  view of application, in certain cases, the cyclic (intermittent) mode 
of an electromagnetic-radiation effect and the discontinuous mode of medium motion - alteration of the periods 
of motion and rest of the medium or periodic variation in the direction of motion (reciprocating motion) - are 
of fundamental importance. 

In a number of cases, a viscosity decrease in heating is a determining factor. This factor exerts a dou- 
ble reverse effect on the dynamics of heating: first, the velocity of motion and the role of convective heat 
transfer increase; second, the absorption coefficient of electromagnetic radiation varies; this variation is, as a 
rule, nonmonotonic, which clearly manifests itself in polar viscous fluids that possess dipole-relaxation dielec- 
tric losses. Polar molecules in the field of  electromagnetic radiation swing in the viscous medium and cause 
losses of radiation energy by friction with the liberation of heat. At slow temperatures, i.e., rather high viscos- 
ity, the molecules do not succeed in following changes in the field, dipole polarization is insufficient, and the 
medium has a low absorptivity. Dipole losses and the absorption coefficient are also low at high temperatures 
when the viscosity is small and orientation of the molecules in the field of radiation occurs virtually without 
friction. At certain mean values of temperature and viscosity, the dipole losses and the absorption coefficient 
of electromagnetic radiation are maximum. Thus, in the general case, a nonmonotonic dependence of the ab- 
sorption coefficient on temperature takes place [1]. 

The distribution of temperature in the case of plane-one-dimensional geometry is described by the fol- 
lowing problem: 
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a 0 = 4XT0txo,/q0 , b 0 = 2pf CfVoTo/qo, f ( z ,  x) = ct (x, t)/o~ 0 . 

Here  /'bound and TO are the values of  the temperature at x = 0 and t = 0, ~, and pc  are the volume-averaged  
thermal  conductivity and heat capacity of  the medium, pf, cf, and v0 are the density,  heat capacity, and initial 
veloci ty of  the moving fluid, o,(x, t) and % are the current and initial values o f  the absorption coefficient, and 
tz(x, t) = c~(T) and ~ 0 )  are the specified functions that determine the dependences  of  the absorption coeff icient  
and velocity of  motion on temperature. 

In the general case, problem (1)-(3) describes the filtration of a liquid in a saturated porous m e d i u m  
with volume-averaged thermophysical  and electrophysical parameters;  in the absence  of  a porous body (mot ion 
in a free space) cf = c and pf = p. The velocity of  medium mot ion is taken to be  specified, and its dependence 
on temperature (in terms of a variation in viscosity as a function of  temperature)  is also assumed to be known.  
Unit  functions (~('G) and G(xe) allow one to describe the discontinuous character  o f  m e d i u m  motion and the 
effect  o f  electromagnetic radiation: 

G(Xv.e)=l  when x , , e > 0 ;  G ( x , , e ) = O  when Xv. e < O .  

Here  "~,, and % are the time intervals that correspond to the presence of  the m e d i u m  motion and the effect o f  
electromagnetic radiation. 

The combined boundary condition for temperature (3) on the surface x = 0 means  that in heating o f  a 
quiescent medium (x,. < 0), this surface is assumed to be adiabatic, and in heat ing o f  a medium that moves  at 
veloci ty v > 0 (~,, > 0), the temperature of  the fluid entering the region of  heat ing f rom outside (x > 0) is speci-  
fied. On modeling the heating of  a liquid moving toward electromagnetic radiation, v < 0 and % < 0, and when  
x = 0 the condition 3T(0, t)/3x = 0 is set. 

The dimensionless parameters to, a0, and b0 have a distinct physical meaning:  to determines the charac-  
teristic time of the medium heating by electromagnetic radiation, a0 is equal to the ratio of  the characteristic 
value of  the heat-flux power due to heat conduction KTo/h (h = 1 / 2 % )  to the densi ty  o f  the flow of the energy  
(intensity) of  electromagnetic radiation, and b0 determines the ratio of  the densi ty o f  the convective heat f lux 
to the intensity of  electromagnetic radiation. It is obvious that bo/ao  is the Peclet  pa ramete r  

13f Cf 
Pe = voh K 

We consider results of  numerical calculations of  p rob lem (1)-(3) for  the fo l lowing basic values of  the 
parameters:  To = 300 K, % = 0.1 l /m,  pc = pfcf = 2.106 J/(m3-K), ~, = 1 W/(m-K) ,  q0 = 105 W / m 2 ,  and vo = 

0.0001 m/sec. Here to = 60,000 sec, a0 = 1.2"10 -3, b0 = 1.2, and Pe = I000. For  the nonmonotonic  dependence  
of  the absorption coefficient of  electromagnetic radiation on temperature we take a piecewise-l inear  approxima-  
tion [1]: 

J l + a  11(0- 1) 

f =  [ a  3 - a 2 (0 - 1) 

[ a4 

0 < 1 ,  

1 - - < 0 - - < 0  m , 

0m<0<_  1 , 

0 > 0 1  • 
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Fig. 1. Dynamics of  temperature waves as a function o f  time for a mo- 
tionless (dashed lines) and a moving medium (solid lines) at u = 2. 

Fig. 2. Dynamics of  temperature waves as a funct ion o f  the rate of con- 

vection; curve 1, u = 0; curves 2-5 correspond to u = 0.5, 1, 2, and 3, 

respectively. 

Here 0m = 1.2, 01 = 1.4, al  = 45, a2 = 47.5, a 3 = 10, and a4 = 0.5. These dimensionless parameters correspond 

to an increase in c~ from 0.1 to 1.0 l/m within the range o f  temperatures 300 -360  K and to its decrease to 0.05 

l /m within the range of  temperatures 360-420 K (~ = 0.05 l /m when T >  420 K). 
Figure 1 presents the dynamics of  a temperature wave as a funct ion of  time. Curves 1-5 correspond to 

times x = 0.05, 0.15, 0.25, 0.35, and 0.5. With the motion of  the med ium the character of  heating changes  both 

qualitatively and quantitatively. A temperature wave is nonmonotonic and has a maximum in the depth o f  the 

heating zone. The isotherm of  the temperature maximum virtually coincides with the coordinate o f  the front of  

convective heat transfer xc = vt; actually, some difference occurs due to the effect of  molecular heat conduc- 
tion. For example, for curve 3, t = 15,000 sec, Xc = 3 m, and x(Tm = 440.93 K) = 2.94 m. The characteristic 
form of the slope of  the temperature curves is determined by two compet ing  factors - cooling due to the arri- 

val of  a cold liquid at the heating zone and heating o f  this liquid by electromagnetic radiation in a nonlinear 

mode when the intensity of  the heating constantly changes with time according to (4). 
The profile of  a temperature wave substantially depends on the velocity o f  medium motion. The corre- 

sponding curves are shown in Fig. 2 for the instant o f  time x = 0.48. With  increase in the velocity o f  medium 

motion the amplitude of  the temperature wave decreases and the depth o f  heating increases. It is obvious  that 
the resulting velocity of  the temperature wave in a moving medium is determined by the sum of  the rates of  

convection v and the "proper" velocity of  the temperature wave in the quiescent medium that can be found 

from the expression [1] 

qo 

pc (T 1 - To) + 2o h qo (t - t s) 

Here ts is the time of  formation of  the temperature wave determined f rom the condition T(0, ts) = Tt. By virtue 
of  the above, it becomes obvious that when convection is directed opposi te  to the propagation o f  electromag- 

netic waves, the velocity of  the temperature wave decelerates and, in principle, the realization o f  a "standing" 

temperature wave is possible. This situation is illustrated in Figs. 3 and 4. Figure 3 presents the curves that 
describe the distribution of  temperature at ~ = 0.4. Curves 1-6 in Fig. 4 correspond to the instants o f  time "~ 

equal to 0.05, 0.15, 0.25, 0.35, 0.45, and 0.5 at the rate of  convection u = -2 .  It is seen that at x = 0.5 virtually 
a standing temperature wave takes place, i.e., localization of  the heating zone is realized. In this case, the basic 

characteristics of  heating - depth and temperature - are determined by  the rate of  convection, thermophysical  

and electrophysical parameters of  the medium, and intensity of  radiation and its frequency (absorptivity o f  the 
medium depends on frequency). Thus, it becomes possible to control and to optimize the process o f  heating by, 

for example, variation of  the rate of  convection and the intensity or  f requency of  radiation. 

923 



a 

1.2 t 

1.0 
0 

0 

1.8 

1.6 

1.4 

• J 

0 1 2 z 

1.2 

1.0 
0 

4 
5 

0.4 z 

Fig. 3. Dynamics of  temperature waves as a function of the absolute value 
of the rate of  convection for v < 0: curve 1, u = 0; curves 2-4 correspond 
to u = -0.5,  -1.5,  and -2.5, respectively. 

Fig. 4. Dynamics of  temperature waves as a function of time at u = -2 .  
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Fig. 5. Dynamics of  a temperature wave with allowance for the cyclic 
character of  heating and motion of  the medium. 

It is seen from a comparison of Figs. 1-4 that the direction of medium motion greatly affects the tem- 
perature profiles. This is associated with the fact that when v > 0 cold liquid enters the heating zone and when 
v < 0 hot liquid leaves this zone. 

Figure 5 shows the profiles of  temperature with allowance for the cyclic character of heating and the 
motion of the heated medium. Curves 1 in Fig. 5a and b correspond to xl = 0.0666, when the heating of the 
liquid moving at a velocity u = 5 halts. Curves 2 show the temperature distribution at "c 2 = 2xl; thus, within 
the time interval ~ 2 -  "~1 the temperature profile is moved by convection in the absence of heating. Some de- 
crease in the maximum temperature due to molecular heat conduction is noted. 

In Fig. 5a, dashed lines 3-5 define the profile of  temperature for the instants of time 2.5"cl, 3.95Xl, and 
5xt; here, at x = 2xt the heating of  the medium begins. As the heating is resumed, a new peak of temperature 
(curve 3), which is then transformed to a temperature plateau (curves 4 and 5) with an asymptotic value of the 
amplitude, appears between the "initial" peak (curve 2) and the surface of radiation (x = 0). At the same time, 
the "initial" peak of temperature (curve 2) is carried away by convection to the right with some spreading due 

to heat conduction. 
In Fig. 5b, dashed lines 3-5 define the profiles of  temperature for the same values of x as in Fig. 5a; 

however, here the situation is represented where at the moment  of resumption of heating 2Xl the motion of the 
medium halts. The region of radiation penetration is progressively heated and the temperature wave moves 
backward (curve 3). A temperature wave whose motion becomes noticeable after its formation (when a tem- 
perature equal to 01 is reached) is generated with time - curves 4 and 5. 

Figure 5c depicts the situation describing the evolution of the temperature profile within a time interval 
from • = 0.25 (curve 1) to x = 0.333 (curves 2-4). In this case, curves 2 and 3 correspond to the heating of 
quiescent and moving media, and curve 4 describes the temperature profile for a medium moving without heat- 
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Fig. 6. Dynamics of temperature waves with allowance for the change in 
viscosity as a function of temperature. 

ing. If  at ~ = 0.25 both the heating and motion of  the medium are eliminated, then the evolution of curve 1 
with time occurs only due to molecular heat conduction. During the considered interval of time the effect of 
heat conduction is small (within the scale of  the figure the difference in the temperature profiles is not re- 
vealed, only a slight difference at the leading front of curve 1 takes place, i.e., some flattening of it is ob- 

served). 
Figure 6 shows the profiles of temperature as functions of  the parameter b which determines the rate 

of  change in the velocity in heating of the medium; the velocity change during the heating was approximated 
by the following relation: v = v0 exp [ b ( T -  To)]. Curves 1-5 correspond to the instants of time x = 0.1, 0.2, 
0.3, 0.4, and 0.5 at u0 < 2 and b = 0.01. Dashed lines 6 and 7 show the distribution of temperature at "r = 0.5 
for b = 0 and b = 0.02. The general tendency in the formation of the temperature field with a variable rate of  
convection is as follows. As the temperature increases, the viscosity decreases and the velocity of  motion in- 
creases; in this case, the contribution of convective heat transfer, which in turn facilitates a decrease in the 
temperature, increases. As a result of this self-limitation of growth, the temperature reaches the asymptotics 
rather quickly, and the asymptotic value of the rate of  convection is set with some delay in time. Thus, after a 
certain interval of  time, a quasistationary temperature wave, which has virtually constant amplitude and veloc- 
ity, is formed. All other things being equal, the amplitude of the temperature wave 0~ decreases and velocity 
grows with increase in v0 (the Peclet parameter) and b; a larger region is covered by heating. At b -- 0.01: 0~ 
= 1.4, Xs = 2.41; at b = 0.05: 0~ = 1/17, x~ = 3.29; at b = 0.1: 0~ = 1.11, Xs = 3.68; here x~ is a dimensionless 
coordinate of the front of  the temperature wave (x~ = 2t~0xs). 

The studied special features of the heating of moving media by electromagnetic radiation make it pos- 
sible to realize the processes of  control and optimization of the heating. For example, varying only the cycles 
of heating and motion, we can obtain a set of  temperature profiles that differ in the temperature, size of the 
region, and rate of  heating. 

N O T A T I O N  

x, coordinate; t, time; T, temperature; cz and q0, coefficient of absorption and the intensity of electro- 
magnetic radiation; v, velocity of medium motion; v0, preexponential factor in the formula of temperature de- 
pendence of velocity; p and c, density and heat capacity of the medium; ~,, thermal conductivity; O, z, "c, and 
u, dimensionless values of  the temperature, coordinates, time, and velocity; cy, Heaviside unit function; Pe, Pe- 
clet number; h, initial depth of penetration of electromagnetic radiation into the medium; to, characteristic time 
of heating; Xo coordinate of  the front of convective heat transfer; x 3, coordinate of  the front of the temperature 

wave; vs, velocity of  the front of the temperature wave; ts, time of formation of the temperature wave. Sub- 
scripts: m, maximum value of the absorption index and the corresponding temperature Ore; f, moving fluid; s, 
front of  the temperature wave; O, initial value; bound, boundary value; c, front of  convective heat transfer; e, 
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presence of electromagnetic radiation; v, presence of medium motion; b, index of the exponential growth in 
velocity as a function of temperature. 
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